New Lower Bounds for the Rank of Matrix Multiplication

نویسنده

  • J. M. Landsberg
چکیده

The rank of the matrix multiplication operator for n×n matrices is one of the most studied quantities in algebraic complexity theory. I prove that the rank is at least 3n2−o(n2). More precisely, for any integer p ≤ n− 1 the rank is at least (3− 1 p+1 )n2 − (1 + 2p 2p p−1 ) )n. The previous lower bound, due to Bläser, was 5 2 n2−3n (the case p = 1). The new bounds improve Bläser’s bound for all n > 84. I also prove lower bounds for rectangular matrices that are significantly better than the previous bound.

منابع مشابه

New lower bounds for the border rank of matrix multiplication

The border rank of the matrix multiplication operator for n× n matrices is a standard measure of its complexity. Using techniques from algebraic geometry and representation theory, we show the border rank is at least 2n2−n. Our bounds are better than the previous lower bound (due to Lickteig in 1985) of 2 n 2 + 2 −1 for all n≥ 3. The bounds are obtained by finding new equations that bilinear ma...

متن کامل

Inner Rank and Lower Bounds for Matrix Multiplication

We develop a notion of inner rank as a tool for obtaining lower bounds on the rank of matrix multiplication tensors. We use it to give a short proof that the border rank (and therefore rank) of the tensor associated with n × n matrix multiplication over an arbitrary field is at least 2n − n + 1. While inner rank does not provide improvements to currently known lower bounds, we argue that this n...

متن کامل

On the geometry of border rank algorithms for matrix multiplication and other tensors with symmetry

We establish basic information about border rank algorithms for the matrix multiplication tensor and other tensors with symmetry. We prove that border rank algorithms for tensors with symmetry (such as matrix multiplication and the determinant polynomial) come in families that include representatives with normal forms. These normal forms will be useful both to develop new efficient algorithms a...

متن کامل

A 5/2 n2-Lower Bound for the Rank of n×n Matrix Multiplication over Arbitrary Fields

We prove a lower bound of 52n 2 3n for the rank of n n–matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices.

متن کامل

Multiplication over Arbitrary Fields

We prove a lower bound of 52n2 3n for the rank of n n–matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • SIAM J. Comput.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2014